Format-Transforming Encryption
(more than meets the DPI)

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

UF Herbert Wertheim
College of Engineering
Department of Computer & Information

Science & Engineeri ng
UNIVERSITY of FLORIDA

Monda
Y In-place encryption of CC database @

1234 Sb78 987k 5432
[—

1234 5678 9876 5432 »| Encrypt > 4417 1234 5678 9112

Today

Circumvention of nation-state internet censorship

“HTTP: ... free+speech+democracy ...”

“Looks benign,
let it pass”.

TCP/IP| ciphertext payload

>| Encrypt

Deep-packet inspection (DPI)

Traditional encryption is ill-suited for these tasks

key >
plaintext >
Encrypt » ciphertext
Natively, plaintexts
are bit strings
(not 16-digit decimal strings) Traditional security goal:

make ciphertexts indistinguishable
from random bit strings

(not well-formatted HTTP messages or CC #s)

Format-Transforming Encryption

(inspired by Bellare et al. “Format-Preserving Encryption”)

key -
plaintext >
plaintext format Chelper i"fo”l FTE i; (t:liwzhser;ecﬁie .
ciphertext format pr— > forrl?nat

A format is a set.

FTE is like traditional encryption, with the
extra operational requirement that
ciphertexts abide by the ciphertext format

Flexibility is "baked in” to the syntax

key >

plaintext .
plaintext format (P ") FTE » ciphertext

ciphertext format —

To change the “look” of ciphertexts, just change the ciphertext format.
The system doesn’t (necessarily) need to change.

Let’s consider the censorship-circumvention setting

DPI

TCP/IP | FTE ciphertext payload

| F

In this setting, shouldn’t assume anything about
plaintext formats...

key >
plaintext >

(0,1} (“helper info”l FTE » Ciphertext

ciphertext format >
(“target”)

3O E
' FIP i

You .
L

FTE

TCP/IP ciphertext payload

... 5O let’s focus on this simpler API

key
plaintext

ciphertext format

: ‘} ?\ 0 @

(“target”)

FTE

>

FTE

TCP/IP

ciphertext payload

» Ciphertext

Our goal: to cause real DPI systems
to reliably misclassify plaintext traffic

for example, HTTP misclassified as FTP

TCP/IP

ciphertext payload

FTE

7 FTP”
ciphertext format

“This is an FTP
message.”

Our goal: to cause real DPI systems
to reliably misclassify our (plaintext) traffic
as whatever protocol we want

3O E
{) FIP Lo

You e
TUhe = :‘j
— TCP/IP ciphertext payload
—_—> FTE
—
arbitrary

ciphertext format

(while still having good throughput, low latency...)

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

“This is an message.”

System Classification Tool Price
appid free
|7-filter free

YAF free

bro free
nProbe ~300 Euros
DPI-X ~$10K

L

Enterprise grade DPI, well-known company

11

“This is an message.”

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

System Classification Tool Price
appid Regular expressions free
|7-filter Regular expressions free
VAF Regular expressions free

(sometimes hierarchical)

Simple regular expression triage,

bro then additional parsing and heuristics free
nProbe Parsing and heuristics (many of them “regular”) ~300 Euros
DPI-X 2 ~$10K

Regular [angauges/expressions
figure heavily in state-of-the-art
DPI classification tools .

Regular-expression-based FTE

key L.
plaintext — FTE > ciphertext in L(R)
regex >
R
Regex defines the

ciphertext format
L(R)

How should we realize regex-based FTE?

Cryptographic protection for the plaintext

We want: , ,
Ciphertexts in L(R)

13

key

plaintext

regex R

Realizing regex-based FTE

encryption

>ciphertext in L(R)

How should we realize regex-based FTE?

We want:

Cryptographic protection for the plaintext
Ciphertexts in L(R)

14

i [Goldberg, Sipser ’85]
Ranking a Regular Language dberg, Sipser 85

rank(x;)=i

Let L(R) be lexicographically ordered
XO< X1 < ... < X < ... < X|L(R)—1|

Given a DFA for L(R), there are efficient algorithms

rank: L(R) — {0O,1,...,|L(R)|-1}
unrank: {0,1,...,|L(R)|-1} — L(R) With precomputed tables,

rank, unrank are O(n)

such that rank(unrank(i)) = i

and unrank(rank(x;)) = x.

15

Realizing regex-based FTE

Intermediate ciphertext,

interpreted as an integer n... o
...outputs n™" string in

/ lexicographic ordering
of L(R)
key L.
encryption >
plaintext — unrank >ciphertext in L(R)

regex R > regex-to-DFA >

16

Now all we need are good regular expressions

key

plaintext

regex R

regex-based
FTE

We considered three options :

» a string in L(R)

1. If the DPI is open source (appid, |7-filter, YAF), try to extract them,

directly!

2. Build them manually, using RFCs and (when possible) DPI source code.

3. Learn them from traffic that was allowed by the DPI.

17

Use case: Browsing the web through an FTE tunnel

>l FTE client

—> Rta rget—>

€

T

Cregular expressions for
HTTP, SSH, SMB, ...

FTE ciphertexts

FTE proxy

FTE “wins” if the DPI classifies the stream it sees
as the target protocol

INTERNET

|

<< R‘[a rget

D

MEeSSages

Using each “target” format, we visited each of the Top 50 websites five times.

18

Punchline: regex-based FTE can make real
DPI say whatever we want it to ~100% of
the time.

//I_Ielp.///

input protocol
stream

input protocol
stream

>| FTE client T > FTE proxy J

Rtarget —> <« Rta rget

19

Browser experience . Browser experience
through FTE tunnel ~ through SSH tunnel

FTE library is open-source, runs on multiple platforms/OS,
and is fully integrated with major circumvention efforts

Eric Schmidt gave us a sizable
unsolicited research gift

A field test...

CJ
Used FTE to download Tor bundle:

Without FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries...

With FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries...

INTERNET

FTE
proxy

Tor without FTE: “active blacklisting” attack on proxy

Tor through FTE: no problems

Ran various tests every 5 minutes for one month,

no sign of detection in logs. (We shut it down after that.)

21

What about in-place encryption of CC database?

L key
1234 5678 9876 5432

regex for language of
16-decimal digit CC #s

regex-based
FTE

22

Not quite handled by “simpler” FTE construction

key ——
1234 5678 9876 5432

CC# regex

encryption

regex-to-DFA

unrank

4417 1234 5678 9112

—

1) valid 16-digit number in, valid 16-digit number out

2) conventional encryption takes bit strings as input

3) conventional encryption has ciphertext stretch

Iplaintext language| = |ciphertext language|

encoding of valid 16-digit strings into bitstrings
expands the effective plaintext space

can have exponential number of AE ciphertexts that

cannot be unranked!

key
plaintext

plaintext format

ciphertext format

Recall the full FTE APL...

‘)

>

(“helper info”)

>

>

FTE

» Ciphertext

24

“rank-encrypt-unrank” FTE construction

(generalization of Bellare et al. SAC’09)

key 1
pixt —
in L(RT) il >| encrypt it
unrank >
ptxt regex in L(R2)
RT regex-to-DFA
ctxt reg§>2< regex-to-DFA I

ranking provides optimal compression of L(R)

25

“rank-encrypt-unrank” FTE construction

key

pixt

in L(RT)

pixt regex

RT [

Cixt regex

regex-to-DFA

rank

> regex-to-DFA I

R2

> encrypt —

unrank

g ctxt

Great potential... but developers face many hard questions:

-- Can | even use R1 and R2 together? (Requires |[L(RT)| < |L(R2)|)

-- Should “encrypt” be deterministic (i.e. a cipher) or can I use traditional encryption?

-- Will both R1 and R2 admit time/space efficient implementations of (un)ranking?

In L(R2)

26

The space/memory issue

key l
ptxt >
——>| encrypt >
rank
unrank > Cixt

regex

gR1 —> regex-to-DFA >
regex > regex-to-DFA I

R2]

unranking requires space
linear in the size of the DFA,

For some regular expressions, this works out just fine...

regex » NFA # DFA

27

The space/memory issue

key l
pixt >
——>| encrypt >
rank
unrank > Cixt

regex

gR1 —> regex-to-DFA >
regex > regex-to-DFA I

R2]

unranking requires space
linear in the size of the DFA,

...for others, you can have an exponential

space blow-up
regex » NFA # D FA

28

The space/memory issue

key

pixt

regex

R1 — [

regex

regex-to-NFA

rank

encrypt

>

R2

regex-to-NFA

[

unrank

> Ctxt

Wanted: efficient (un)ranking methods that work directly from the NFA representation

regex # NFA

Problem: (un)ranking from NFAs (or directly from a regex) is PSPACE-complete

29

relaxed rank-encrypt-unrank FTE construction

key l
pixt >
relaxed — encrypt — I d
rank re axek > Ctxt

regex unran

8R1 —>| regex-to-NFA —>
regex »| regex-to-NFA I

R2

Wanted: efficient (un)ranking methods that work directly from the NFA representation

regex # NFA

Problem: (un)ranking from NFAs (or directly from a regex) is PSPACE-complete

We side-step this by developing a new
“relaxed ranking” algorithm .

Ranking of a language from a DFA

1-1 correspondence between strings and accepting paths

+
efficient alg. for 1-1 mapping between paths and integers

rank(x;)=i and unrank(i)=x

original intermediate
representation representation
(strings) (accepting DFA paths)

31

“Rank”

original

representation
(strings)

intermediate
representation
(accepting DFA paths)

|
0

|
1

v

] | deterministic jfrm—
rank encrypt
unrank
R =B regex-to-DFA jm=p
»| regex-to-DFA —I_)

Enc, (i)
j] j
2 i C 1]-1=|L(R)|-1

encrypt and decrypt are done

over this set

32

“rank” "encrypt” "unrank”

original intermediate intermediate target
representation representation Enc,(i) representation representation
(strings) (accepting DFA paths) (paths) (strings)
[\
| 1| | |
012 i C 1|-1=|L(R)|-1

33

Ranking of a language from an NFA

original representation

(strings) p I I |

intermediate representation
(accepting NFA paths)

34

Relaxed
Ranking of a language from an NFA

= ®

original representation
(strings)

'ﬁ.

012 i 1|1

First, need a 1-1
mapping from strings to
distinguished paths...

...Then, can use a modified version
of path-ranking algorithm for a
1-1 map from I to [0... |I|-1]

intermediate representation
(accepting NFA paths)

35

Relaxed

Ranking of a language from an NFA

original representation
(strings)

First, need a 1-1
mapping from strings to
distinguished paths...

Image of L(R) under
first mapping

intermediate representation

(accepting NFA paths)

0

|
1

2

...Then, can use a modified version
of path-ranking algorithm for a
1-1 map from I to [O...|I|-1]

|
I1|-1>> |L(R)|-1

36

Relaxed

Ranking of a language from an NFA

original representation
(strings)

rank

¥

Image of L(R) under

first mapping

intermediate representation

¥

(accepting NFA paths)

unrank
| regex-to-NFA
»| regex-to-NFA —I-)
encrypt and dec I‘ypt are
done over this set...
I I
2 |1|-1>> |L(R)|-1

We use “cycle-walking” and
rejection sampling tricks to
deal with this sort of problem

37

Relaxed

Ranking of a language from an NFA (ot

2 CFOY)

rank

¥

unrank >

R =Bl regex-to-NFA
R »| regex-to-NFA —I-)

£

! encrypt and dec I‘ypt are

Image of L(R) under done over this set...
original representation ' :
strings) first mapping — |
012 IT|-1>> |L(R)|-T

intermediate representation
(accepting NFA paths)

We use “cycle-walking” and
rejection sampling tricks to
deal with this sort of problem

38

LibFTE (https://libfte.org)

key

P >| (relaxed encrypt
() T YPE | (relaxed)
rank determ./randomized
Cycle-walking, unrank > ctxt

resex rej. sampling

R1 ——p|regex-to-{N,D}FA|—>
R >lregex-to-{N,D}FA I

R2

LibFTE is a library (python, C++ APIs) that supports this framework

Provides a configuration tool to help developers make
good, well informed design choices

LibFTE configuration assistant

Input: input regex, output regex, operational restrictions
(e.g. encryption must be randomized/deterministic)

Output: ERROR or a list of predefined FTE schemes that
satisfy the restrictions, with statistics

$./configuration-assistant \ $./configuration-assistant \
> --input-format " (a|b)*a(a|b){16}" 0 64 \ > --input-format " (a|b)*a(a|b) {16}" 0 32 \
> —--output-format "[0-9a-f]{16}" O 16 > —--output-format "[0-9a-f]{16}" O 16

==== Identifying valid schemes ==== ==== Identifying valid schemes ====
No valid schemes. WARNING: Memory threshold exceeded when
building DFA for input format
VALID SCHEMES: T-ND, T-NN,
T-ND-$, T-NN-$

==== Evaluating valid schemes ====
SCHEME ENCRYPT DECRYPT ... MEMORY
T-ND 0.32ms 0.31ms ... 77KB
T-NN 0.39ms 0.38ms ... 79KB

é

Tackling the next challenge

uniform uniform uniform
random —==7 integer ™ ciphertext
bits \ \
key]
pixt
rank > encrypt I— \
unrank > Ctxt
regex
R1 — 17| regex-to-DFA
regex »| regex-to-DFA |_)

R2

Tackling the next challenge

uniform

random
bits \

key

ptxt

}

“translation
info.”

ptxt >
translation

encrypt

ctxt

—

encode

> Ctxt

format

[0.25 0.25 0.25 0.25

Probability

‘A, ‘B, CC, (D’

Ciphertext

Let’s expand the idea of a format
from a set to a distribution...

...and generalize unranking
to encoding of bits into the
ctxt format

Tackling the next challenge

uniform

random
bits \

key 1
ptxt >
tht. > encrypt ———>
“translation translation encode > Ctxt
info.”
>
Ctxt r
format
0.49 :
2z How should we handle this?
§ lo.24 0.25
DQ_ How does one invertibly sample from a non-uniform

0.01 0.01 distribution using uniform bits? (Additionally, when the
number of ctxts in the format is not a power of two?)

‘A, ‘B, CC, ‘D’ CE,

Ciphertext

Probability

1. Sort the ciphertexts by 2. Collect into bins that are
probability mass (@) a power of two in size,
(b) all ciphertexts within a bin have probabilities
that are “close” (this is a controllable parameter)

0.49 0.49 049 0.49
2 2
0.25 e 0.25 o)
0.24 _8 0.24 _g
S S
o o 0.02
0.01 0.01 0.01 0.01
‘A ‘B’ ‘¢’ ‘D’ ‘g ‘B’ ‘c? ‘A ‘D’ ‘g {‘B’} {‘C’,‘A’} {‘D’ ‘E’}
Ciphertext Ciphertext Bin
3. Sample a bin according to its 4. Sample within the bin using
total probability mass (uniform) input bits
0.49 049 0.49 0.49
2 2
i i
(qe} qv}
o O
S S
o 0.02 o 0.02
{‘B’} {‘C,,‘A,} {CD’ CE,} {CB,} {‘C’,‘A,} {‘D, CE’}

Bin Bin

0.49
by
2 0.25
q¥)
s [0.24
S
o
0.01 0.01
‘A’ ‘B, ‘C’ ‘D, ‘E,
Ciphertext

Note: roughly half the time we

encode zero bits!

On average, 0.51 bits per sample

Probability

049 0.49

| 0.02

{CB,} {‘C,,‘A,} {‘D, ‘E’}
Bin
Pr[A] = Pr[A |{ C,A }]Pr[{C,A }]
= (0.5)(0.49)
= 0.245

0.49
by
2 0.25
qu)
s [0.24
S
o
0.01 0.01
‘A’ ‘B, ‘C, ‘D, ‘E’
Ciphertext

On average, 1 bit per sample

Bin size

Bigger/heavier bins,
more bits encoded!

VS.

0.74

0.26

Probability

0.01

{‘B,,‘C,} {‘A,,‘D, } {‘E,}
Bin
Pr[A] = Pr[A|{ A,D }]Pr[{A,D }]
= (0.5)(0.26)
= 0.13

Fidelity of sampling

Smaller/lighter bins,
smaller sampling error!

key

pixt

“translation
info.”

ctxt

ptxt
translation

>

encrypt

encode

Approximate,
invertible sampling

> Ctxt

format

Determining the format can be quite challenging...

Distribution depends on granularity/alphabet

How do you actually assert a particular distribution on a

compact set-representation (e.g. a regex¢)

Markov Chain

Probabilistic CFG

Simple Probabilistic CFG
S — NP VP

NP . Pranoun [D.10]
| Neun (0.20)
| Det Agy Noun 0.50]
INP PP [0.20]
PP - Prap NP (1.00]
v . Verb [0.35]
| Aux Verb [0.67]
VP - v 10
| VNP
|V NP NP
| VNP PP
|VP PP

LING 3060 - 2008 3 Mp

Markov Chain

Probabilistic CFG

S —
NP

PP -
v

W -

LING 2000 . 2008

Simple Probabilistic CFG

NP VP
Pranoun

| Noun

| Det Agy Noun
INP PP
Prep NP
Verb

| Aux Verb
v

| VNP

|V NP NP
| VNP PP
| VP PP

[0.10]
{0.20]

0.50]
[0.20]
(1.00]
[0.33]
[0.67]

Machine-Learned Models

e

pixt

“translation
info.

ctxt
format

ptxt
translation

>

encrypt >

encode

Approximate,
invertible sampling

Rootel

: A Methodology for the Typical Unification

of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

AbsTRACT
Many physicists would agree that, had it ot been for

have ocourred. In fact, fow hackers worldwide would disagree
with the essential unification. of voice-over-IP and public-
private key pair.In order to solve this riddle, we confirm that
‘SMPs can be made stochasti, cacheable, and interposable.

L. INTRODUCTION

Many scholars would sgree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
imestgaion of Miokon models is sy oudtd. A e
retical grand challenge in theory is the important unificat

of virual macinesand realtioe thory. To what emm ean
web browsers be constructed to achieve this purpose’

Ccmmly, the sl mcthodsfor e cmlstion of Sl

pavd the ey fr the nestgton of rterization
2ot apply i s arc. T the opinton of manydoepte -
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
belicve that 4 different solution is necessary. It should be
noted that Rooter runs in (loglogn) time. Certanly, the
shortcoming ofths type of solution, however, i that compilers

sperpages are mostly incompatible. Despite the fact that
similar methodologies visuslize XML, we surmount this issuc
without synthesizing distributed archetypes.

We question the need for digital-to-analog converters. It
should be noted that we allow DHCP to harness homoge-
neous epistemologies without the evalustion of evolutionary
programming (2], [12], [14]. Contraily, the lookaside buffer

ca that end-users expected. However,
this method is never considered confusing. Our
turns the knowledge-base communication sledgehammer into
a sealpel

Our focus in our rescarch is not on whether symmetric
cypion and expent syt s el incompate, bt

decd,

wtive networcs and vitual mackines have & mng ms\nry of
collaborating i this manner. The basic tenet of this solution
is the refinement of Scheme. The disadvantage of this type
of approsch, howee, i that public rivale ey par and re0-
trees are rarely incompatible. The usual methods for the
isalzaton o RPCo o ot sppy in his s, Thereore, we
on not o use clectronic modalites to measure the
mprovement of horarchicl dabases

“The rest of tis paper is organized as follows. For starers,

£(n+logn) time (22]. In the ead, we conclud.
1L ARCHITECTURE

Our research i principled. Consider the carly methodology
by Martin and Smith; our model is but will sctually
ome this grand challenge. Despite the fact that such
a claim at fist glance scems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
tme gt o e e of b oging by
and Feigenbaum et al. [15] is impossible; our application

isno mﬁcru\l “This may or may not actually hold in reality

2

components: simued anseling, st ctvorks, feible
‘modalics, and the study of reinforcement learning.

We consir an gt consoing of . scmaghores

Any unproven synthesis of introspective methodologies will
clearly require that the well-known reliable algorithm for the
investigation of randomized algorithms by Zheng is in Co-NP;
our application s no different. The question is, will Rooter
satify all of these assumptions? No.

Reality aside, we would like to deploy a methodology for

how Rooter might behave in theory. Furthermore, consider

e carly archieeure by Satos our methodology i s,
but will sctually achieve this goal. despite the results by Ken

h

amphibious, highly-available, and linear-time. See our prior
technical report (9] for etails.
III. IMPLEMENTATION

implementation of our approach is low-cnergy,
Bayesian, and introspective. Further, the 91 C files contains
about 8969 lines of SmallTulk. Rooter requires root aceess
in order to locate mobile communication. Despite the fuct
that we heve not. yet optimized for complexity,this should be
simple once we finish designing the server daemon. Overall,

In submission: using machine-learned generat

1 Second

%072 VBRI TR0
Mm-S

e PRAL

=L

ive models as formats.

5
o
b
O
1)
Ty
ey
3

)"\
&

(o e v rieQ o

N B SN ey
Sl wrne 30T N — W
B WhHINOW-

> Ctxt

Format-Transforming Encryption
(more than meets the DPI)

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

UF Herbert Wertheim
College of Engineering
Department of Computer & Information

Science & Engineeri ng
UNIVERSITY of FLORIDA

