
Format-Transforming Encryption
(more than meets the DPI)

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

In-place encryption of CC database

“Looks benign,
let it pass”.

Encrypt

“HTTP: … free+speech+democracy …”

TCP/IP ciphertext payload

Circumvention of nation-state internet censorship

1234 5678 9876 5432 4417 1234 5678 9112Encrypt

Deep-packet inspection (DPI)

Monday

Today

3

Encrypt

key

plaintext

Traditional encryption is ill-suited for these tasks

ciphertext

Natively, plaintexts
are bit strings
(not 16-digit decimal strings) Traditional security goal:

make ciphertexts indistinguishable
from random bit strings

(not well-formatted HTTP messages or CC #s)

4

FTE

key

ciphertext

Format-Transforming Encryption

plaintext format

ciphertext format

FTE is like traditional encryption, with the
extra operational requirement that
ciphertexts abide by the ciphertext format

(“target”)

(“helper info”)

(inspired by Bellare et al. “Format-Preserving Encryption”)

in the specified
format

plaintext

A format is a set.

Flexibility is “baked in” to the syntax

FTE

key

plaintext format

ciphertext format
(“target”)

(“helper info”)

plaintext
ciphertext

To change the “look” of ciphertexts, just change the ciphertext format.
The system doesn’t (necessarily) need to change.

5

Let’s consider the censorship-circumvention setting

FTE

TCP/IP FTE ciphertext payload

DPI

6

In this setting, shouldn’t assume anything about
plaintext formats…

FTE

TCP/IP ciphertext payload

FTE

key

ciphertext{0,1}*

ciphertext format
(“target”)

(“helper info”)

plaintext

7

8

FTE

TCP/IP ciphertext payload

… so let’s focus on this simpler API

FTE

key

ciphertext

ciphertext format
(“target”)

plaintext

9

FTE

TCP/IP ciphertext payload

“FTP”
ciphertext format

Our goal: to cause real DPI systems
to reliably misclassify plaintext traffic

for example, HTTP misclassified as FTP

“This is an FTP
message.”

FTE

TCP/IP ciphertext payload

Our goal: to cause real DPI systems
to reliably misclassify our (plaintext) traffic
as whatever protocol we want

(while still having good throughput, low latency…)

arbitrary
ciphertext format

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

“This is an _____ message.”

System Classification Tool Price

appid free

l7-filter free

YAF free

bro free

nProbe ~300 Euros

DPI-X ~$10K

Enterprise grade DPI, well-known company

11

We wondered:
How do real DPI devices determine
to what protocol a message belongs?

“This is an _____ message.”

Regular langauges/expressions
figure heavily in state-of-the-art
DPI classification tools

System Classification Tool Price

appid Regular expressions free

l7-filter Regular expressions free

YAF Regular expressions
(sometimes hierarchical)

free

bro
Simple regular expression triage,

then additional parsing and heuristics
free

nProbe Parsing and heuristics (many of them “regular”) ~300 Euros

DPI-X ??? ~$10K

12

13

FTE

key

plaintext ciphertext in L(R)

How should we realize regex-based FTE?

We want:
Cryptographic protection for the plaintext

Ciphertexts in L(R)

Regular-expression-based FTE

regex
R

Regex defines the
ciphertext format
L(R)

14

key

plaintext ciphertext in L(R)

regex R

encryption

How should we realize regex-based FTE?

We want:
Cryptographic protection for the plaintext

Ciphertexts in L(R)

Realizing regex-based FTE

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

x2

rank(xi)=i

unrank(2)=x2

With precomputed tables,
rank, unrank are O(n)

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

rank: L(R) {0,1,…,|L(R)|-1}
unrank: {0,1,…,|L(R)|-1} L(R)

such that rank(unrank(i)) = i
and unrank(rank(xi)) = xi

Given a DFA for L(R), there are efficient algorithms

15

key

plaintext ciphertext in L(R)

regex R

Realizing regex-based FTE

encryption

unrank

regex-to-DFA

Intermediate ciphertext,
interpreted as an integer n…

…outputs nth string in
lexicographic ordering
of L(R)

16

regex-based
FTE

key

plaintext a string in L(R)

regex R

Now all we need are good regular expressions

We considered three options :

1. If the DPI is open source (appid, l7-filter, YAF), try to extract them,
directly!

2. Build them manually, using RFCs and (when possible) DPI source code.

3. Learn them from traffic that was allowed by the DPI.

17

Use case: Browsing the web through an FTE tunnel

Rtarget
FTE client FTE proxy

Rtarget

Internet

FTE “wins” if the DPI classifies the stream it sees
as the target protocol

FTE ciphertexts
regular expressions for
HTTP, SSH, SMB, …
messages

Using each “target” format, we visited each of the Top 50 websites five times.

18

Rtarget
FTE client

input protocol
stream

FTE proxy

input protocol
stream

Rtarget

Punchline: regex-based FTE can make real
DPI say whatever we want it to ~100% of

the time.

“Help!”

19

Browser experience
through FTE tunnel

⇡ Browser experience
through SSH tunnel

FTE library is open-source, runs on multiple platforms/OS,
and is fully integrated with major circumvention efforts

Eric Schmidt gave us a sizable
unsolicited research gift

A field test…

FTE
client

Internet

FTE
proxy

Ran various tests every 5 minutes for one month,
no sign of detection in logs. (We shut it down after that.)

Used FTE to download Tor bundle:

Tor without FTE: “active blacklisting” attack on proxy
Tor through FTE: no problems

Without FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

With FTE tunnel, we tried
Facebook, YouTube, Tor website,
banned search queries…

21

1234 5678 9876 5432
4417 1234 5678 9112

What about in-place encryption of CC database?

regex-based
FTE

key

regex for language of
16-decimal digit CC #s

22

1234 5678 9876 5432

CC# regex

|plaintext language| = |ciphertext language|

key
encryption

unrank

regex-to-DFA

4417 1234 5678 9112

1) valid 16-digit number in, valid 16-digit number out

2) conventional encryption takes bit strings as input

encoding of valid 16-digit strings into bitstrings

expands the effective plaintext space

3) conventional encryption has ciphertext stretch
can have exponential number of AE ciphertexts that

cannot be unranked!

Not quite handled by “simpler” FTE construction

24

FTE

key

ciphertext

Recall the full FTE API…

plaintext format

ciphertext format

(“helper info”)

plaintext

“rank-encrypt-unrank” FTE construction

encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

key

ptxt
in L(R1)

ctxt
in L(R2)ptxt regex

R1
ctxt regex

R2

(generalization of Bellare et al. SAC’09)

ranking provides optimal compression of L(R)

25

“rank-encrypt-unrank” FTE construction

Great potential… but developers face many hard questions:

-- Can I even use R1 and R2 together? (Requires |L(R1)| ≤ |L(R2)|)

-- Will both R1 and R2 admit time/space efficient implementations of (un)ranking?

-- Should “encrypt” be deterministic (i.e. a cipher) or can I use traditional encryption?

-- …

encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

key

ptxt
in L(R1)

ptxt regex
R1

ctxt regex
R2

ctxt
in L(R2)

26

The space/memory issue

encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

key

ptxt

regex
R1

regex
R2

ctxt

regex NFA DFA

For some regular expressions, this works out just fine…

unranking requires space
linear in the size of the DFA,

27

encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

key

ptxt

regex
R1

regex
R2

ctxt

…for others, you can have an exponential space blow-up

regex NFA DFA

unranking requires space
linear in the size of the DFA,

The space/memory issue

28

encrypt

regex-to-NFA

regex-to-NFA

rank

key

ptxt

regex
R1

regex
R2

ctxt

Wanted: efficient (un)ranking methods that work directly from the NFA representation

unrank

The space/memory issue

regex NFA DFA

Problem: (un)ranking from NFAs (or directly from a regex) is PSPACE-complete

29

relaxed rank-encrypt-unrank FTE construction

encrypt
relaxed
unrank

regex-to-NFA

regex-to-NFA

relaxed
rank

key

ptxt

regex
R1

regex
R2

ctxt

Wanted: efficient (un)ranking methods that work directly from the NFA representation

Problem: (un)ranking from NFAs (or directly from a regex) is PSPACE-complete

We side-step this by developing a new
“relaxed ranking” algorithm

regex NFA DFA

30

Ranking of a language from a DFA

0 1 2 |I|-1i

xi rank(xi)=i and unrank(i)=xi

(strings)

original
representation

p

intermediate
representation

(accepting DFA paths)

L(R) I

=|L(R)|-1

1-1 correspondence between strings and accepting paths

efficient alg. for 1-1 mapping between paths and integers
+

31

0 1 2 |I|-1i

xi

(strings)

original
representation

p

intermediate
representation

(accepting DFA paths)

L(R) I

=|L(R)|-1

deterministic
encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

R

R

EncK(i)

encrypt and decrypt are done
over this set

c

“Rank”

32

0 1 2 |I|-1i

xi

(strings)

original
representation

p

intermediate
representation

(accepting DFA paths)

L(R) I

=|L(R)|-1

EncK(i)

c

xc

(strings)

target
representation

q

intermediate
representation

(paths)

L(R)I

“rank” ”encrypt” ”unrank”

33

Ranking of a language from an NFA

0 1 2 |I|-1i

xi

(strings)
original representation

p

intermediate representation
(accepting NFA paths)

L(R)
I

p

p

p

34

Relaxed
Ranking of a language from an NFA

0 1 2 |I|-1i

xi

(strings)
original representation

p

intermediate representation
(accepting NFA paths)

L(R)
I

p

p

p

First, need a 1-1
mapping from strings to
distinguished paths…

…Then, can use a modified version
of path-ranking algorithm for a
1-1 map from I to [0…|I|-1]

35

0 1 2 |I|-1i

xi

(strings)
original representation

p

intermediate representation
(accepting NFA paths)

L(R)
I

>> |L(R)|-1

First, need a 1-1
mapping from strings to
distinguished paths…

Image of L(R) under
first mapping

…Then, can use a modified version
of path-ranking algorithm for a
1-1 map from I to [0…|I|-1]

Relaxed
Ranking of a language from an NFA

36

0 1 2 |I|-1i

xi

(strings)
original representation

p

intermediate representation
(accepting NFA paths)

L(R)
I

>> |L(R)|-1

encrypt

unrank
regex-to-NFA

regex-to-NFA

rank

R

R

j

r

Image of L(R) under
first mapping

We use “cycle-walking” and
rejection sampling tricks to
deal with this sort of problem

encrypt and decrypt are
done over this set…

Relaxed
Ranking of a language from an NFA

37

0 1 2 |I|-1i

xi

(strings)
original representation

p

intermediate representation
(accepting NFA paths)

L(R)
I

>> |L(R)|-1

encrypt

unrank
regex-to-NFA

regex-to-NFA

rank

encrypt and decrypt are
done over this set…

j

r

Image of L(R) under
first mapping

We use “cycle-walking” and
rejection sampling tricks to
deal with this sort of problem

R

R

Relaxed
Ranking of a language from an NFA

38

LibFTE (https://libfte.org)

encrypt (relaxed)
unrank

regex-to-{N,D}FA

regex-to-{N,D}FA

(relaxed)
rank

key

ptxt

regex
R1

regex
R2

ctxt
determ./randomized,

cycle-walking,
rej. sampling

LibFTE is a library (python, C++ APIs) that supports this framework

Provides a configuration tool to help developers make
good, well informed design choices

LibFTE Configuration Assistant

26

input: input format, output format, and optional restrictions
(e.g., encryption must be randomized/deterministic)

output: an error OR a list of schemes that satisfy the user-
specified constraints, with statistics (no. cycle walks, etc.)

$./configuration-assistant \
> --input-format "(a|b)*a(a|b){16}" 0 64 \
> --output-format "[0-9a-f]{16}" 0 16 !
==== Identifying valid schemes ====
No valid schemes.
ERROR: Input language size greater than
output language size.
$  !!!!!!

error

$./configuration-assistant \
> --input-format "(a|b)*a(a|b){16}" 0 32 \
> --output-format "[0-9a-f]{16}" 0 16 !
==== Identifying valid schemes ====
WARNING: Memory threshold exceeded when
 building DFA for input format
VALID SCHEMES: T-ND, T-NN,
 T-ND-$, T-NN-$!
==== Evaluating valid schemes ====
SCHEME ENCRYPT DECRYPT ... MEMORY
T-ND 0.32ms 0.31ms ... 77KB
T-NN 0.39ms 0.38ms ... 79KB
…  
$

OR

success

LibFTE configuration assistant

Input: input regex, output regex, operational restrictions
(e.g. encryption must be randomized/deterministic)

Output: ERROR or a list of predefined FTE schemes that
satisfy the restrictions, with statistics

Tackling the next challenge

uniform
random

bits

encrypt

unrank
regex-to-DFA

regex-to-DFA

rank

key

ptxt

regex
R1

regex
R2

ctxt

uniform
integer

uniform
ciphertext

Tackling the next challenge

uniform
random

bits

encrypt

encode

ptxt
translation

key

ptxt

“translation
info.”

ctxt
format

ctxt

Pr
ob

ab
ili

ty

Ciphertext

‘a’ ‘b’ ‘c’ ‘d’

0.25 0.25 0.25 0.25

Let’s expand the idea of a format
from a set to a distribution…

…and generalize unranking
to encoding of bits into the
ctxt format

Tackling the next challenge

uniform
random

bits

encrypt

encode

ptxt
translation

key

ptxt

“translation
info.”

ctxt
format

ctxt

How should we handle this?

Pr
ob

ab
ili

ty

Ciphertext

‘a’ ‘b’ ‘c’ ‘d’

0.24

0.49

0.25

0.01 0.01

‘e’

How does one invertibly sample from a non-uniform
distribution using uniform bits? (Additionally, when the
number of ctxts in the format is not a power of two?)

Pr
ob

ab
ili

ty

Ciphertext

‘a’ ‘b’ ‘c’ ‘d’

0.24

0.49

0.25

0.01 0.01

‘e’

Pr
ob

ab
ili

ty

Ciphertext

‘a’‘b’ ‘c’ ‘d’

0.24

0.49

0.25

0.01 0.01

‘e’

Pr
ob

ab
ili

ty

{‘b’} {‘c’,‘a’} {‘d’ ‘e’}

0.49 0.49

0.02

1. Sort the ciphertexts by
probability mass

2. Collect into bins that are
(a) a power of two in size,
(b) all ciphertexts within a bin have probabilities

that are “close” (this is a controllable parameter)

Pr
ob

ab
ili

ty

{‘b’} {‘c’,‘a’} {‘d’ ‘e’}

0.49 0.49

0.02

3. Sample a bin according to its
total probability mass

Pr
ob

ab
ili

ty

{‘b’} {‘c’,‘a’} {‘d’ ‘e’}

0.49 0.49

0.02

4. Sample within the bin using
(uniform) input bits

Bin

Bin Bin

Pr
ob

ab
ili

ty

Ciphertext

‘a’ ‘b’ ‘c’ ‘d’

0.24

0.49

0.25

0.01 0.01

‘e’

Pr
ob

ab
ili

ty

{‘b’} {‘c’,‘a’} {‘d’ ‘e’}

0.49 0.49

0.02

Bin

Pr[A] = Pr[A | { C,A }] Pr[{C,A }]
= (0.5)(0.49)

= 0.245

Note: roughly half the time we
encode zero bits!

On average, 0.51 bits per sample

Pr
ob

ab
ili

ty

Ciphertext

‘a’ ‘b’ ‘c’ ‘d’

0.24

0.49

0.25

0.01 0.01

‘e’

Pr
ob

ab
ili

ty

{‘b’,‘c’} {‘a’,‘d’ } {‘e’}

0.74

0.26
0.01

Bin

Pr[A] = Pr[A | { A,D }] Pr[{A,D }]
= (0.5)(0.26)

= 0.13

On average, 1 bit per sample

Bin size Fidelity of sampling

Bigger/heavier bins,
more bits encoded!

Smaller/lighter bins,
smaller sampling error!

vs.

encrypt
encode

ptxt
translation

key

ptxt

“translation
info.”

ctxt
format

ctxtApproximate,
invertible sampling

Determining the format can be quite challenging…

Distribution depends on granularity/alphabet

How do you actually assert a particular distribution on a
compact set-representation (e.g. a regex?)

Markov Chain

Probabilistic CFG

Markov Chain

Probabilistic CFG Machine-Learned Models

encrypt
encode

ptxt
translation

key

ptxt

“translation
info.”

ctxt
format

ctxtApproximate,
invertible sampling

In submission: using machine-learned generative models as formats.

Format-Transforming Encryption
(more than meets the DPI)

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

